2nd Quadrant
For an angle θ in the second quadrant the reference angle φ is the remaining angle needed to complete a straight angle, that is, π radians or 180°. Thus θ + φ = π or θ + φ = 180°, and so
φ = π - θ or φ = 180° - θ.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgcR47xpcHASyT9CrkEuQTqwI1OBxj77O1cj5J_C405xCQZKaBaWO8vKa4YBMKtENFxSCrATOyngOlk_ADVy6FuNnePDSDOpObKgnpFeHyLkJgvAM-N4O8kK_QuNttRfJj_IXsDTF5mC6ef/s320/q2.jpg)
3rd Quadrant
For an angle θ in the third quadrant the reference angle φ is the angle that must be subtracted from θ to leave a straight angle, that is, π radians or 180°. Thus θ - φ = π or θ - φ = 180°, and so
φ = θ - π or φ = θ - 180°
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg_5JSCqqUyqcei7zT2a56kkeUza6pm2dnwYucxhcpiAhQBhE4uO_K_p4u5BQahvsyzyUNC0TqY_aF2jNqHO7JA8kSxlclzqkwNvcblv4jeAgHHF9mx3p41kJnPsFccPLBVFq09RWT8U0l4/s320/q3.jpg)
4th Quadrant
For an angle θ in the fourth quadrant the reference angle φ is the remaining angle needed to complete a full circle angle, that is, 2π radians or 360°. Thus θ + φ = 2π or θ + φ = 360°, and so
φ = 2π - θ or φ = 360° - θ.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhTiAAqNyO0xnFuqMksSM1fCnucpRT3sKXminYZ_lXzzqHpTTVREUT8k_pK9Xz5SreOSzGDkagan2ghj-DsXYHJ5hAvAnaGO0bjUVIicZzyfRjkXzd_s7yqO4eO9zUtBWKwR9pcpLwTxhZu/s320/q4.jpg)